Vibrational Distribution of $N_2(B^3\Pi_g)$ Produced from Dissociative Recombination of N_2O^+ in a Helium Flowing Afterglow

Masaharu Tsuji,* Takeshi Tanoue,[†] Yuki Tanaka,[†] and Yukio Nishimura Institute of Advanced Material Study, Kyushu University, Kasuga, Fukuoka 816-8580 [†]Department of Applied Science for Electronics and Materials, Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580

(Received February 14, 2000; CL-000148)

 $N_2(B^3\Pi_g - A^3\Sigma_u^+)$ emission resulting from a dissociative recombination (DR) process of N_2O^+ has been observed in a He afterglow reaction of N_2O . The vibrational population of $N_2(B:v'=0-10)$ exhibited a bimodal distribution with peaks at v'=1 and 4, probably associated with the $N_2(B) + O(^1D)$ and $N_2(B) + O(^3P)$ processes, respectively.

Electron-ion recombination is an important loss process of charged species in natural plasma including interstellar gas clouds and planetary ionospheres and in man-made plasmas such as laser plasmas and combustion flames.¹ Although a DR process of N₂O⁺ is important for understanding loss processes of N_2O^+ in natural and man-made plasmas, there has been only one preliminary spectroscopic study by Taieb and Broida.² They observed $N_2(B^3\Pi_g\text{-}A^3\Sigma_u^{+})$ neutral emission from the v'=2-5 levels in a He afterglow reaction of N_2O . The quenching effects of SF₆ and of microwave heating which increases the electron temperature and reduces the electron-ion recombination rate led them to the conclusion that $N_2(B)$ is produced by electron-ion recombination. Although N2(B) can be formed by electron recombination with N_2O^+ and N_2^+ , the ratio of the intensity of the N₂(B-A) emission was much greater than that of the N_2^+ (B-X) one. Therefore, they predicted that the e^-/N_2O^+ DR is a major source of N₂(B-A) emission. However, the contribution from the e^{-}/N_{2}^{+} recombination cannot be excluded from possible formation mechanisms of N₂(B), because the precursor $N_2^+(X)$ ions are produced through not only $N_2^+(B-X)$ radiative cascade but also through a direct mechanism.

In the present study, DR of N_2O^+ is studied in a He flowing afterglow by observing $N_2(B-A)$ emission in a wider spectral range than that in the previous study of Taieb and Broida.² The contribution of the e^-/N_2^+ recombination is examined by using N_2 gas. The vibrational distribution of $N_2(B:v'=0-10)$ is determined.

The flowing-afterglow apparatus used in this study was the same as that used for the study of DR of $CO_2^{+,3}$ In brief, the positive N_2O^+ ions were produced by the $He(2^{3}S)/N_2O$ Penning ionization, and He^+/N_2O and He_2^+/N_2O charge-transfer reactions by the addition of N_2O into the He afterglow 10 cm downstream from a center of the microwave discharge. On the other hand, electrons were formed via a direct microwave discharge of He and Penning ionization of N_2O . They were completely thermalized by collisions with buffer He gas before arriving at the reaction zone. The partial pressure in the reaction zone was 1.0 Torr (=133.3 Pa) for He and 5-50 mTorr for N_2O . Under these operating conditions, the electron density was measured to be ~ $10^{10}/\text{cm}^{3}$ by using a single Langmuir probe. The emission spectra were dispersed in the 400-1100 nm region with a Spex 1250 M monochromator. A Hamamatsu Photonics (HP)

R376 photolumiplier was used in the measurement of 400-800 nm region, while a red sensitive HP R316-02 one was employed in the measurement of 800-1100 nm region. Emission spectrum presented here was corrected for the wavelength response of the detection system.

Figure 1. $N_2(B^3\Pi_g - A^3\Sigma_u^+)$ emission obtained from the He afterglow reaction of N_2O at a total pressure of 1 Torr.

A typical emission spectrum observed 10 cm downstream from an inlet of N₂O is shown in Figure 1, where the $\Delta v=2$ and 3 sequences of the N₂(B³Π_g-A³Σ_u⁺) transition from v'=2-10 is identified. Although Taieb and Broida² observed N₂(B-A) emission from the v'=2-5 levels, the v'=0-10 levels are identified in the 570-1080 nm region in this study. When a small amount of an electron scavenger, SF₆, was added into the observation region, the N₂(B-A) emission reduced its intensity by factors of 5-8. This implies that almost all N₂(B) is formed though some electron-ion recombination processes. In addition to DR of N₂O⁺(1), the following radiative recombination (2a), collisional radiative recombination (2b), and three-body recombination (2c) of N₂⁺ are possible as the formation processes of N₂(B:v'=0-10):

$$e^{-} + N_2 O^{+} \rightarrow N_2 (B:v'=0.10) + O,$$
 (1)

$$e^{-} + N_2^{+} \rightarrow N_2(B:v=0-10) + hv,$$
 (2a)
 $e^{-} + N_2^{+} + e^{-} \rightarrow N_2(B:v=0-10) + e^{-}$ (2b)

$$e^{-} + N_2^{+} + M \rightarrow N_2(B:v=0-10) + M$$
 (M=He or N₂O). (2c)

Taieb and Broida² concluded that processes (2a)-(2c) were unimportant because the ratio of the intensity of the N₂(B-A) emission was much greater than that of the N₂⁺(B-X) one. In order to examine the contribution of processes (2a)-(2c), sample N₂O gas was replaced by N₂ gas. No evidence of processes (2a)-(2c) was found at low N₂ flow rates, where the e⁻/N₂⁺·N₂ DR process leading to N₂(B)⁴ was insignificant. It was therefore concluded that the responsible recombination process for the formation of N₂(B:v'=0-10) is DR of N₂O⁺ (1).

Chemistry Letters 2000

In order to examine the vibrational distribution of the precursor N₂O⁺(X²Π_g:v₁",v₂",v₃") ion, laser induced fluorescence (LIF) of N₂O⁺(A²Σ⁺-X²Π_i) was observed in a He afterglow using a similar LIF apparatus reported previously.⁵ Only the LIF bands from the ground N₂O⁺(X²Π_g:0,0,0) level were observed. This finding led us to conclude that N₂O⁺(X²Π_g:v₁",v₂",v₃") ions were completely relaxed to the ground vibrational level by collisions with He and N₂O before arriving at the recombination reaction zone.

The energetics for the formation of $N_2(B^3\Pi_g)$ via DR of $N_2O^+(X^2\Pi_o:0,0,0)$ is as follows:

 $\begin{array}{ll} e^{-} + N_2 O^{+}(X^2 \Pi_g : 0, 0, 0) \\ \rightarrow & N_2 (B: v' = 0 \text{--} 10) + O(^3 \text{P}), \quad \Delta \text{H}^\circ = \text{--} 3.80 \sim \text{--} 1.85 \text{ eV}, \ (3a) \\ \rightarrow & N_2 (B: v' = 0 \text{--} 10) + O(^1 \text{D}), \quad \Delta \text{H}^\circ = \text{--} 1.84 \sim 0.11 \text{ eV}. \ (3b) \end{array}$

The total available energies for processes (3a) and (3b) were estimated to be $1.92 \sim 3.87$ eV and $-0.05 \sim 1.91$ eV, respectively, by taking account of the relative kinetic energy and the rotational energy of N₂O⁺(X) at 300 K (5/2RT).

The vibrational distribution of N₂(B:v'=0-10) in the DR process of N₂O⁺(X²Π_g:0,0,0), N_{v'}, was determined from the emission intensity of a (v',v") transition of N₂(B-A), I_{v'v"}, using the following relation:

$$\mathbf{I}_{\mathbf{v}'\mathbf{v}''} = \mathbf{N}_{\mathbf{v}'}\mathbf{A}_{\mathbf{v}'},\tag{4}$$

where A_{v} is the Einstein coefficient of the N₂(B-A) transition distribution, which has been reported by Piper *et al.*⁶ The emission intensity was evaluated by measuring the total area of each vibronic band. The vibrational distribution obtained is shown in Figure 2. The uncertainties of the N_v values were estimated

Figure 2. Vibrational distribution of $N_2(B^3\Pi_g)$ produced from DR of $N_2O^+(X^2\Pi_g:0,0,0)$ at thermal energy.

to be within ±8%. The vibrational distribution of N₂(B) was independent of buffer He gas pressure in the 0.5-1.5 Torr range and N₂O pressure in the 5-50 mTorr range. It was thus concluded that the vibrational relaxation by collisions with He and N₂O was insignificant and the observed vibrational distribution reflects the nascent population. On the other hand, the rotational distribution of N₂(B) was expected to be relaxed nearly completely by collisions with He and N₂O due to long radiative lifetimes of N₂(B: τ =4.3-12.1 µs for v'=0-10).⁶ It should be noted that the observed vibrational population exhibits a bimodal distribution with peaks at v'=1 and 4. These low and high v' components are probably associated with two exit channels (3b) and (3a), respectively. The average vibrational energy deposited into N₂(B) in the DR of N₂O⁺(X²Π_g:0,0,0), <E_v>, was evaluat-

ed to be 0.74 \pm 0.06 eV from the observed vibrational distribution.

Two mechanisms have been proposed for DR processes of polyatomic ions.⁷ One is a direct process, which proceeds through the following two-stage mechanism:

$$e^{-} + N_2 O^{+} (X^2 \Pi_g : 0, 0, 0) \rightleftharpoons N_2 O^{**} \rightarrow N_2 (B) + 0,$$
 (5)

where the free electron of energy $\varepsilon = V^{**}(N_2O^{**}) - V^+(N_2O^+)$ excites an electron of N_2O^+ and it is then resonantly captured by the ion to form a repulsive state of the doubly excited N_2O^{**} molecule, which in turn can either autoionize or predissociate into $N_2(B) + O$. The other is indirect mechanism which proceeds through the following three-stage mechanism,

$$e^{-} + N_2 O^{+}(v_i^{+}) \rightarrow [N_2 O^{+}(v_f) - e^{-}]_n \rightarrow N_2 O^{**} \rightarrow N_2 (B) + O, \quad (6)$$

where the accelerating electron loses energy by vibrationally exciting $(v_i^+ \rightarrow v_f)$ ion and is then captured into a Rydberg orbital of the bound N_2O^* molecule which then interacts with the doubly excited repulsive N_2O^{**} molecule via configuration mixing. According to theoretical prediction of Bate,⁸ the former mechanism is significant for DR of polyatomic ions. It is therefore reasonable to assume that $N_2(B)$ is produced via a direct mechanism. The fact that favorable vibrational levels are v'=1 and 4 indicates that vibrational wavefunction of the precursor $N_2O^+(X^2\Pi_g:0,0,0)$ level is favorably overlapped with the $N_2(B:v'=1) + O(^1D)$ and $N_2(B:v'=4) + O(^3P)$ repulsive curves. Therefore, an efficient double electron capture transition into two antibonding molecular orbitals will be induced.

When C_6F_6 was added as an electron scavenger, a weak $N_2(B-A)$ emission resulting from the following $N_2O^+/C_6F_6^-$ ionion recombination reaction was observed:

$$N_2O^+(X^2\Pi_g:0,0,0) + C_6F_6^- \rightarrow N_2(B) + O + C_6F_6.$$
 (7)

We are planing to compare the vibrational distributions of $N_2(B)$ between the $N_2O^+/C_6F_6^-$ reaction and the e^-/N_2O^+ one reported here in order to obtain more information on the dynamical features of the DR process of N_2O^+ .

This work was partially supported by the Mitsubishi foundation and a Grant-in-Aid for Scientific Research No. 09440201 from the Ministry of Education, Science, Sports, and Culture, Japan.

References and Notes

- "Dissociative Recombination, Theory, Experiment, and Applications," NATO ASI Series B; Physics, ed by B. R. Rowe, J. Brian, A. Mitchell, and A. Canosa, Plenum Press, New York (1993) Vol. 313.
- 2 G. Taieb and H. P. Broida, Chem. Phys., 21, 313 (1977).
- 3 M. Tsuji, M. Nakamura, Y. Nishimura, and H. Obase, J. Chem. *Phys.*, **108**, 8031 (1998).
- 4 Y. S. Cho and R. Johnsen J. Chem. Phys., 95, 7356 (1991).
- 5 M. Ochsner, M. Tsuji, and J. P. Maier, *Chem. Phys. Lett.*, **115**, 373 (1985).
- 6 L. G. Piper, K. W. Holtzclaw, B. D. Green, and W. A. M. Blumberg, J. Chem. Phys., 90, 5337 (1989).
- 7 M. R. Flannery, Adv. Atom. Mol. Opt. Phys., 32, 1 (1993).
- 8 D. R. Bate, J. Phys., **B24**, 695 (1991).